PRODUCT SPECIFICATION

規格書

CUSTOMER: DATE:

(客戶): (日期):2018-06-09

CATEGORY (品名) : ELECTRIC DOUBLE LAYER CAPACITORS

DESCRIPTION (型号) : DRL 2.7V10 F (φ12.5x20)

VERSION (版本) : 01

Customer P/N : /

SUPPLIER : /

SUPPLIER				
PREPARED (拟定)	CHECKED (审核)			
杜焕	刘渭清			

CUSTOMER			
APPROVAL	SIGNATURE		
(批准)	(签名)		

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

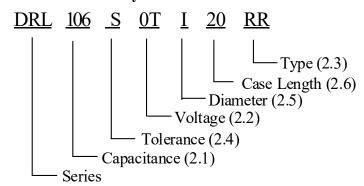
	SPECIFICATION DDI SEDIES			ALTERN	ATION HIS	TORY	
DRL SERIES				ECORDS	Ι.		
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver

Issued-date: 2018-06-09	Name	Specification Sheet – DRL		
Version	01		Page	1
STANDARD MANUAL				

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

CONTENTS

	CONTENTS		
		Sheet	
1.	Application	3	
2.	Part Number System	3	
3.	Characteristics	$4 \sim 10$	
3.1	Rated voltage & Surge voltage		
3.2	Capacitance (Tolerance)		
3.3	ESR		
3.4	Leakage current		
3.5	Temperature characteristic		
3.6	Load life test		
3.7	Damp heat test		
3.8	Lead strength		
3.9	Resistance to vibration		
3.10	•		
3.11	Resistance to soldering heat		
4. F	Product Dimensions	11	
5. N	otice item	12	


Issued-date: 2018-06-09	Name	Specification Sheet – DRL		
Version	01		Page	2
STANDARD MANUAL				

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DRL SERIES

1. Application

The specification applies to electric double layer capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	106
Capacitance (F)	10

2.2 Rated voltage code

Code	0T
Voltage (W.V.)	2.7

2.3 <u>Type</u>

Code	RR
Type	Bulk

2.4 <u>Capacitance tolerance</u>

"S" stands for $-20\% \sim +50\%$

2.5 <u>Diameter</u>

Code	I
Diameter	12.5

2.6 Case length

20=20mm

Issued-date: 2018-06-09	Name	Specification Sheet – DRL				
Version	01		Page	3		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

3. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

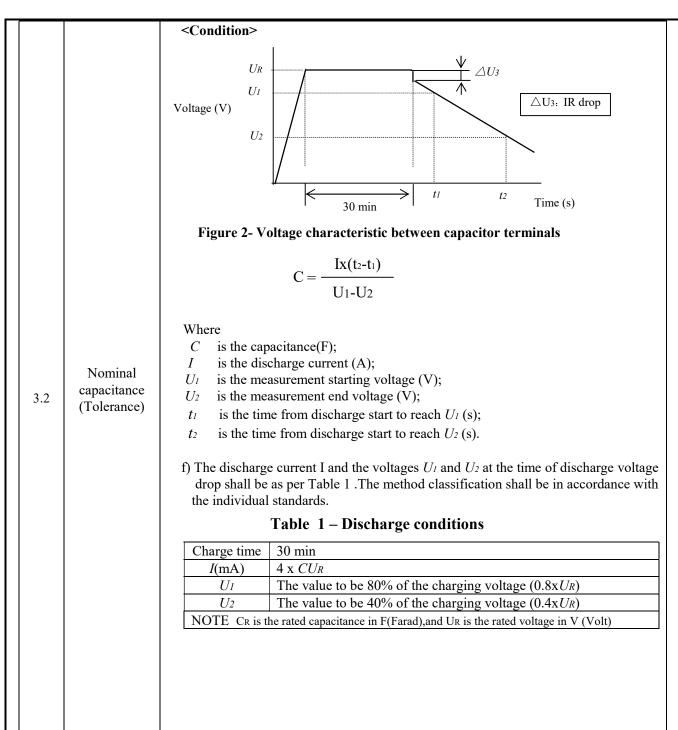
Ambient temperature: 15°C to 35°C
Relative humidity : 25% to 75%
Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -40°C to 70°C.


Issued-date: 2018-06-09	Name	Specification Sheet – DRL				
Version	01		Page	4		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

	ITEM	PERFORMANCE			
3.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 2.7 SV (V.DC) 2.8			
3.2	Nominal capacitance (Tolerance)	Constant current discharge method: Measuring circuit: Constant current / constant voltage power supply d.c. ammeter d.c. voltmeter s. changeover switch cx capacitor under test Figure 1- Circuit for constant current discharge method Measuring method a) Set the d.c. voltage at the rated voltage (UR) b) Set the constant current value of the constant current discharger to the discharge current specified in Table 1. c) Turn the switch S to the d.c. power supply ,apply voltage and charge for 30 minum after the constant current / constant voltage power supply has achieved the rate voltage. d) After a charge for 30 min has finished ,change over the switch S to the constant current discharger ,and discharge with a constant current. e) Measure the time t ₁ and t ₂ where the voltage between capacitor terminals at the time of discharge reduces from U ₁ to U ₂ as shown in Figure 2 ,and calculate the capacitance value by the following formula:			

Issued-date: 2018-06-09	Name	Specification Sheet – DRL				
Version	01		Page	5		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

Issued-date: 2018-06-09	Name	Specification Sheet – DRL				
Version	01		Page	6		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

3.3	ESR	Measur Measur Crite	ing frequency :1kHz ing temperature:20±2°C ring point :2mm ma wire. ria> Less than the initial limit:	x from the surface o	f a sealing resin on the lead
3.4	Leakage current	2.The 6 3. Desi <criter i≤0.025<="" less="" td="" th=""><td>bient temperature: $25^{\circ}\text{C} \pm 10^{\circ}$ electrification time: 72H stance value of protective ia> an the initial limit($25^{\circ}\text{C} \pm 10^{\circ}$</td><td>resistor less than 1Ω</td><td>Σ.</td></criter>	bient temperature: $25^{\circ}\text{C} \pm 10^{\circ}$ electrification time: 72H stance value of protective ia> an the initial limit($25^{\circ}\text{C} \pm 10^{\circ}$	resistor less than 1Ω	Σ.
3.5	Temperature characteristic	<condition 1="" 2="" 3<="" step="" th=""><th>Temperature(°C) 20±2 -40+3 Keep at 15 to 35°C for 15 minutes or more 70±2</th><th>Item Capacitance ESR △ C/C ESR △ C/C ESR</th><th>Characteristics Within ±30% of initial capacitance Less than or equal to 4 times of the value of item 3.3 Within ±30% of initial capacitance The limit specified in 3.3</th></condition>	Temperature(°C) 20±2 -40+3 Keep at 15 to 35°C for 15 minutes or more 70±2	Item Capacitance ESR △ C/C ESR △ C/C ESR	Characteristics Within ±30% of initial capacitance Less than or equal to 4 times of the value of item 3.3 Within ±30% of initial capacitance The limit specified in 3.3
			-40°C/ ESR 20°C: ESR rati C 20°C: Capacitance chanş		

Issued-date: 2018-06-09	Name	Specification Sheet – DRL				
Version	01		Page	7		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

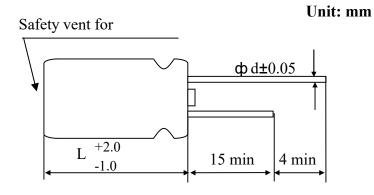
		<criteria></criteria>	
		Item	Performance
		Capacitance Change	Within ±30% of initial capacitance
3.6	Load life	ESR	Less than or equal to 4 times of the value of item 3.3
3.0	test	Appearance	No visible damage and no leakage of electrolyte
		<condition></condition>	
		Humidity Test: The capacitor shall be	exposed for 240±48 hours in an atmosphere of 90~95%RH stic change shall meet the following requirement.
		Humidity Test: The capacitor shall be 40±2°C, the characteri	stic change shall meet the following requirement.
		Humidity Test: The capacitor shall be 40±2°C, the characteri Criteria> Item	stic change shall meet the following requirement. Performance
	Damp	Humidity Test: The capacitor shall be 40±2°C, the characteri <criteria> Item Capacitance Change</criteria>	Performance Within ±30% of initial capacitance
3.7	Damp heat test	Humidity Test: The capacitor shall be 40±2°C, the characteri Criteria> Item	stic change shall meet the following requirement. Performance

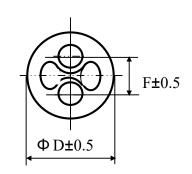
Issued-date: 2018-06-09	Name	Specification Sheet – DRL					
Version	01		Page	8			
	STANDARD MANUAL						

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

		a) Lead pull strength				
		A static load force shall be applied to the terminal in the axial direction and acting				
		in a direction away from the				
		Lead wire diameter (mm)		Load force (N)		
3.8		$0.5 < d \le 0.8$		10		
	Lead strength	table above is applied to one	lead and then returned to a v	position and the weight specified in the the capacitor is slowly rotated 90° to a vertical position thus completing bends site direction Load force (N)		
		$0.5 < d \le 0.8$	(11111)	5		
			stic shall meet	the following value after a) or b) test.		
		Item	Performance	•		
		Capacitance Change		% of initial capacitance		
		Appearance	No visible of	damage Legible marking and no		
			leakage of	electrolyte		
3.9	Resistance to vibration	Frequency: 10 to 55 Hz (1minute Amplitude: 0.75mm(Total excurs Direction: X、Y、Z(3 axes)Duration: 2hours/ axial (Total 6 h The capacitors are supported as the supported as the support of	ion 1.5mm) nours)			
			Fig2 shall not show	drastic change compared to the initial		
		capacitance when the value is me	asured within	30 minutes. Prior to the completion of 10% compared to the initial value the		

Issued-date: 2018-06-09	Name	Specification Sheet – DRL				
Version	01		Page	9		
STANDARD MANUAL						


ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	


,		
3.10	Solderability	The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 2.0±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 75% of the dipped portion of the terminal shall be covered with new solder.
3.11	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260 ±5°C Immersing time : 5±0.5s Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature : 350 ±10°C Application time : 3.5 ±0.5 s Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: Item

Issued-date: 2018-06-09	Name	Specification Sheet – DRL					
Version	01		Page	10			
	STANDARD MANUAL						

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DRL SERIES

4. Product Dimensions

φD	12.5
L	20
F	5.0
φd	0.6

Issued-date: 2018-06-09	Name	Specification Sheet – DRL				
Version	01		Page	11		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER	
CAPACITORS	
SPECIFICATION	
DRL SERIES	

5. Notice item

- (1) The capacitor has fixed polarity.
- (2) The capacitor should be used under rated voltage.
- (3) The capacitor should not be used in the charge and discharge circuit with high frequency.
- (4) The ambient temperature affects the super capacitor life.
- (5) Voltage reduction ΔV =IR will happen at the moment of discharge.
- (6) The capacitor cannot be stored on the place with humidity over 85%RH or place with toxic gas.
- (7) The capacitor should stored in the environment within -30°C~50°C temperature and less than 60% relative humidity.
- (8) If the capacitor is applied on the double-side PCB, the connection should not be around the place on which the super capacitor can contact.
- (9) Don't twist capacitor or make it slanting after installing.
- (10) Need avoid over heat on the capacitor during soldering (The temperature should be 260°C with the time less than 5s during soldering on 1.6mm printed PCB.)
- (11) There is voltage balance problem between each capacitor unit during series connection between super capacitor.

Issued-date: 2018-06-09	Name	Specification Sheet – DRL					
Version	01		Page	12			
	STANDARD MANUAL						

寿命 Lifespan	993	
贮存寿命 Shelf Life	+60°C下无负荷贮存1,000小时后电容器符合规定的限值 After 1,000 hours storage at +60°C without load, the capacitor shall meet the specified limits for endurance.	
耐用性 Endurance	+60°C下采用额定电压1,000小时后电容器符合以下限定值 After 1,000 hours application of rated voltage at +60°C, the capacitor shall meet the following limits.	
	容量变化 Capacitance Change	初始测试值的±30% ±30% of initial measured value
	内阻 Internal Resistance	≤初始值的2倍 ≤2 times of initial specified value
循环次数 Cycles		
循环次数 Cycles	在+25°C下·用恒定电流使电容器在规定电压和半额定电压间循环充放电 (500,000次) Capacitors cycles between specified voltage and half rated voltage under constant current at +25°C (500,000 cycles)	
	容量变化 Capacitance Change	初始测试值的±30% ±30% of initial measured value
	内阻 Internal Resistance	≤初始值的2倍 ≤2 times of initial specified value